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ECOSYSTEM- AND TAXON-SPECIFIC DYNAMIC AND
ENERGETICS PROPERTIES OF LARVAL
FISH ASSEMBLAGES

Edward D. Houde and Colleen E. Zastrow

ABSTRACT

Growth rates, mortality rates, and energetics properties of teleost larvae differ among species
and among ecosystems. In this synthesis, the ingestion rates required to support mean growth
of larvae were estimated and energy budgets were developed. Weight-specific growth coef-
ficients (G), instantaneous mortality rates (Z), larval stage durations (D), gross growth effi-
ciencies (K,), and weight-specific oxygen uptake (QO,) were obtained from published sources
and categorized by marine and freshwater species. Rates and properties were subcategorized
by marine ecosystems and by taxonomic group. The strong temperature dependencies of
rates and properties for larvae were adjusted by analysis of covariance to allow mean values
to be compared among ecosystems and taxa. After adjustment, relatively few significant
differences were detected, indicating that, with important exceptions, teleost larvae have
characteristic and predictable attributes. Marine fish larvae have higher Z, longer D and
higher QO, than freshwater larvae, probably because marine larvae weigh less at hatch (47
ug versus 339 ug). Larvae of coral reef fishes had lower temperature-adjusted G than larvae
from other marine ecosystems. Values of K, (mean = 0.301) differed little among ecosystems
or taxonomic groups and were not related to temperature. Energy budgets, which integrate
the effects of rates and properties, differed appreciably among ecosystems and taxa. Ingestion,
metabolism, and assimilation were higher for marine than for freshwater larvae. Mean tem-
perature-adjusted ingestion rates usually were 40 to 65% of body weight, although values as
high as 97% (Scombroidei) were estimated. Larvae from cool ecosystems (10°C) required two
to four times less ingested energy on a daily basis than larvae from warm systems (28°C) to
grow at their respective mean rates. Assimilation efficiencies declined as temperature in-
creased. Temperature-adjusted mean assimilation efficiencies (A) were 0.65 for marine and
0.56 for freshwater teleost larvae; A ranged from 0.54 (shelf) to 0.75 (upwelling) for marine
ecosystems, and from 0.47 (Salmoniformes) to 0.82 (Gadiformes) across taxonomic groups.
Rates and relationships reported here, while not intended to predict species-specific responses,
do provide information on deviations by individual species from predicted rates and can
identify specific adaptations and life-history strategies. Results of the analyses will be useful
to categorize, compare, and model ichthyoplankton assemblages in pelagic communities.

Most marine organisms have high fecundities and produce abundant progeny,
which suffer high mortalities as they grow through early life toward recruitment.
In teleost fishes, the recruitment process and its mechanisms are difficult to study
because of the great potential for variability in growth and mortality rates in early
life (Houde, 1987, Wootton, 1990), the problem of obtaining temporally and
spatially representative samples, and the confounding effects of a dynamic, ad-
vective environment (Taggart and Leggett, 1987; McGurk, 1989; Taggart and
Frank, 1990). Factors that may be categorized as either subtle or episodic affect
the abundances of larval fish cohorts as they advance toward recruitment (Houde,
1989a). The causes of recruitment successes or failures often go unexplained, in
part because mean rates and variability of response by larvae, as well as ecosystem
and taxon-specific effects, are unknown.

The complexity of the recruitment process makes it unlikely that the process
will be studied or understood in detail for many species. Thus, it is appealing to
examine the problem in a general or conceptual framework. If levels of growth,
mortality, and required ingestion of fish larvae are ecosystem-specific or taxon-
specific, important issues could be addressed regarding life-history strategies, re-
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cruitment dynamics, and early life bioenergetics. It also would be possible to
consider fish larvae as components of ecosystems and to develop models that
explicitly included fish early life stages.

Recently, some conceptualized approaches to understand factors that affect
levels of growth and mortality in early life have been proposed. The roles of body
size, of ontogenetic shifts in susceptibility to mortality, and the interdependence
of growth and mortality rates, have helped to relate events in early life to overall
life history strategies (Werner and Gilliam, 1984; Peterson and Wroblewski, 1984;
McGurk, 1986, 1987; Miller et al., 1988; Beyer, 1989; Pepin, 1991). Growth and
mortality have been found to depend upon body size, food availability, and
temperature. There are strong, apparently predictable, relationships between tem-
perature and vital rates of marine fish larvae (Houde, 1989b; Morse, 1989). Thus,
the bioenergetics and ingestion requirements of larvae developing under warm or
cool temperatures differ markedly, and spawning strategies of fishes may vary
latitudinally as a consequence of temperature-related constraints in early life.
Evolved, taxon-specific growth potential in early life also may be latitudinally
regulated (Conover, 1990; Conover and Present, 1990), adding complexity to
probable relationships. Taxon-specific feeding behavior and potential are mor-
phologically determined (Hunter, 198 1) and may affect growth and mortality rates,
as well as energetics properties, of teleost larvae.

In this paper we examine growth and mortality rates, stage durations, metabolic
rates, and growth efficiencies of fish larvae from marine and freshwater ecosystems.
Within the marine category, comparisons were made among taxa from estuarine,
shelf, oceanic, upwelling, and coral reef systems. Taxon-specific comparisons were
made at the levels of order and suborder. Primary objectives were to determine
ingestion requirements and develop energy budgets of larvae from the designated
ecosystem and taxonomic categories. An overall goal was to learn whether food
requirements of fish larvae are basically similar across taxa and ecosystems, reg-
ulated strongly by the physiological constraints imposed by temperature, or wheth-
er there are characteristic and adaptive differences within ecosystems or taxa that
shape the recruitment process and other aspects of teleost life histories.

METHODS

Values of instantaneous mortality rates and instantaneous (weight-specific) growth rates, weight-
specific oxygen uptakes, and gross growth efficiencies of teleost larvae were obtained from published
literature or, if not explicitly given, were calculated when appropriate data were provided. Except for
mortality rates, which came only from studies on unmanipulated wild populations, data were from
both laboratory and field experiments. The data base (Appendix A) is restricted to the larval stage
from hatching to metamorphosis and is expanded significantly beyond that compiled by Houde (1989b)
to explore relationships between vital rates, energetics, and temperature for marine fish larvae. The
analysis undertaken was not without risk because the data are of variable quality, and were collected
and analyzed for different purposes. Despite these concerns, the approach is believed to be worthwhile,
especially as an attempt to find generalities in teleost life histories that will be useful to understand
population and community dynamics at ecosystem or broad taxonomic levels.

When weight-specific rates were not given, we converted growth rates for length to growth rates for
weight using length-weight relationships. For some taxa, especially coral reef species, it was necessary
to apply length-weight relationships from larvae of morphologically similar species (usually Sparidae).
In cases where temperatures were not reported (e.g., coral reef species) we determined approximate
temperatures from atlases of seasonal sea surface temperatures that corresponded to the areas of
nterest.

When rates and values were not estimated and reported explicitly in a publication, but suitable raw
data were provided, we sometimes calculated rates, efficiencies, and energetics values. Except for the
coral reef fishes, data points are for individual species. The coral reef larvae were treated at the genus
level because, while larvae of many coral reef species have been measured and aged (e.g., Brothers et



292 BULLETIN OF MARINE SCIENCE, VOL. 53, NO. 2, 1993

al.,, 1983; Victor, 1986, 1987; Thresher and Brothers, 1989; Wellington and Victor, 1989), usually
only a few individuals of any single species were analyzed.

Larvae were assigned to marine or freshwater categories. The marine larvae were subcategorized as
estuarine, shelf, oceanic, upwelling, or coral reef species. Taxa were examined at the ordinal or
subordinal level of classification (Appendix A). Some freshwater fishes with atypically large larvae
(e.g., Salmonidae, Acipenseridae, Ictaluridae) were not included in our analyses.

The following data were used: W,, Dry weight at hatch (ug); W,..., Dry weight at metamorphosis
(ug); G, Weight-specific growth coefficient (-d—'); Z, Instantaneous mortality coefficient (-d—'); D, Larval
stage duration (d). Days to grow from weight at hatch (W,) to estimated weight at metamorphosis
(W...); QO,, Weight-specific oxygen uptake (ul O,-mg-'-h~'); I, Weight-specific daily food ingestion
(-d~!), expressed as a fraction of body weight; and K, Gross growth efficiency, defined as the ratio
of G/I.

Regression relationships between these variables and temperature were derived. When more than
a single value of a variable was available, the median values were regressed on median temperature.
Analysis of covariance, with temperature as the covariate, was used to determine if the regression
relationships or mean values differed among ecosystems or among taxa. The adjusted means (tem-
perature effects having been removed) were tested (ANCOVA) to determine which differed significantly
{a = 0.10) and, consequently, if larvae could be categorized by ecosystem or taxon. An « level of 0.10
was selected to increase the power of tests to discern possible differences among ecosystems or taxa,
admittedly at an increased risk of concluding falsely that differences existed (Type I error).

Daily ingestion requirements (I) of fish larvae seldom are reported in published literature (but, see
MacKenzie et al., 1990). However, if both G and K, are known, I can be estimated as I, = G/K,.
We examined the relationship between 1 and temperature. A second approach to estimate I, which
accounts for temperature effects and which is based upon the relationship I; = G/K,, also was applied,
where K, is mean gross growth efficiency and G is the expected growth rate derived from the relationship
between growth and temperature. Because G had been derived from the equation, G = a + bT (where
T is temperature °C), and K,, had been estimated, the expected relationship between daily ingestion
rate and temperature was I; = (a + b:l')/f(.. The I, and I; estimates are not completely independent,
since both were derived from G and K, values that were available. The I estimator is a more general
form because it uses the growth-temperature relationships to predict mean ingestion requirements for
the ecosystem and taxon categories.

Energy budgets of teleost larvae were derived for all larvae, marine larvae, freshwater larvae, and
for larvae classified by ecosystem-specific and taxon-specific categories. These budgets were developed
from the mean values of ingestion, growth, and metabolism that were estimated for each of the
categories. Budgets in cal-mg~'-d~' were expressed as: | = G + M + U + F where I = ingestion, G
= growth, M = metabolism, U = urine, and F = feces. The assumed conversion from dry weight to
calories was 0.005 cal-ug~'. An oxycalorific conversion coefficient of 0.00463 cal-ul~' O, was applied
(Brett and Groves, 1979) to convert oxygen uptake (QO,) to metabolism. Reported oxygen uptake
values generally were stated to be, or we presumed them to be, resting or routine rates. To determine
M, we assumed that the reported QO, prevailed during a 12-h dark period each day when feeding
and activity were minimal, and that a doubled rate (2-QO,) prevailed during a lighted 12-h period
when larvae were active and feeding. Urine production accounts for a small proportion of ingestion
and we assumed that U = 0.071, the mean value for young, carnivorous fishes (Brett and Groves,
1979). Loss as feces was obtained by difference. Assimilation efficiency was calculated as A = (I —
F)/1. The Q,, values were calculated for G and M. Both temperature-specific and temperature-adjusted
energy budgets were developed. The temperature-adjusted budgets, which allow direct comparisons
of budget components among ecosystems and among taxonomic groups, were derived from the adjusted
mean rates estimated in the analyses of covariance.

RESULTS

The regression relationships between larval G, D, Z, QO,, and temperature
were significant but quite variable (Figs. 1-4). The addition of more marine species
(primarily coral reef and oceanic) and the addition of freshwater species to the
data base of Houde (1989b) did not change fundamental relationships, but the
variability about the regressions increased. A total of 118 species was included
in our analyses (Appendix A). A summary of the mean values for vital rate and
energetics parameters is included as Table 1.
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Figure 1. A. Ecosystem- and B. Taxon-specific, weight-specific growth coefficients (G, d-') of teleost

larvae in relation to temperature. EST = estuarine, SH = shelf, CR = coral reef, OCN = oceanic, FW
= freshwater, UW = upwelling, CLU = Clupeiformes, CYPR = Cypriniformes, GAD = Gadiformes,
G = Gobioidei, LABR = Labroidei, PERC = Percoidei, PLEUR = Pleuronectiformes, SAL = Sal-
moniformes, SCOMB = Scombridae, A = Atheriniformes, GN = Gonorynchiformes, S = Schindler-
ioidei. Each data point is a reported or calculated value. In the case of species with more than one

value reported for the variable of concern on temperature, the median value is plotted.
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Figure 2. A. Ecosystem- and B. Taxon-specific, instantaneous mortality coefficients (Z, d—') of teleost
larvae in relation to temperature. See Figure 1 for keys and explanations.

Weight at Hatch (W,). —The mean of reported dry weights at hatch of freshwater
larvae were heavier than those of marine larvae. The mean weight at hatch of 20
freshwater species was 339 ug (SE = 74.0 ug) while that of 45 marine species was
47 ug (SE = 9.7 ug). The weight differential is the probable reason for differences
between marine and freshwater larvae in oxygen uptake, larval stage durations,
and mortality rates that are reported in the following analyses.
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Figure 3. A, Ecosystem- and B. Taxon-specific, stage durations (D, days) of teleost larvae in relation
to temperature. See Figure | for keys and explanations.

Growth (G). —Weight-specific growth rates, which ranged from 0.02-d~' (Pleu-
ronectes platessa) to 0.79 (Scomberomorus maculatus) generally increased as tem-
perature increased. The mean weight-specific growth coefficient of 106 species
was 0.194 (Table 2). On average, G of teleost larvae increases by approximately

0.01 for each 1°C rise in temperature.
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Figure4. A, Ecosystem- and B, Taxon-specific, weight-specific oxygen uptake rate (QO,, ul O, -mg~'-

h-1!) of teleost larvae in relation to temperature. See Figure 1 for keys and explanations.

The regression coefficients for the relationships of G on T for freshwater and
marine taxa (Table 2) did not differ significantly (P = 0.20), although the coefficient
for marine species (0.0106) appeared to be higher than that of freshwater species
(0.0052). The temperature-adjusted G values for freshwater and marine taxa,
0.177 and 0.200, respectively, do not differ significantly (ANCOVA, P = 0.30).

The adjusted, ecosystem-specific G for the marine larvae were: coral reef: 0.159;
estuary: 0.195; upwelling: 0.242; oceanic: 0.256; and shelf: 0.269. These means
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Table 1. Teleost larvae. Ecosystem-specific and taxon-specific means of variables that were analyzed.
{Except for “All Data,” means for each category are the temperature-adjusted values from analyses
of covariance.)

Data set G z D K, QO, I A
All data 0.194 0.222 33.06 0.301 435 0.530 0.65
(18°)
Freshwater 0.177 0.160 20.65 0.319 2.79 0.458 0.56
Marine 0.200 0.239 36.14 0.291 5.90 0.572 0.65
Marine ecosystems
Estuarine 0.195 0.266 35.86 0.241 6.40 0.680 0.57
Shelf 0.269 0.250 34.14 0.296 4.78 0.477 0.54
Upwelling 0.242 0.184 36.43 0.368 6.16 0.647 0.75
Oceanic 0.256 - 25.94 - - - -
Coral reef 0.159 - 35.88 - - - -
Taxa
Clupeiformes 0.196 0.179 43.85 0.308 4.04 0.620 0.59
Cypriniformes 0.162 - 14,76 0.305 2.34 0.347 0.52
Salmoniformes 0.195 0.244 19.59 0.256 3.28 0.589 0.47
Gadiformes 0.196 0.265 45.71 0.325 7.77 0.422 0.82
Percoidei 0.204 0.221 29.92 0.353 3.62 0.538 0.63
Labroidei 0.108 - 54.20 - - - -
Gobioidei 0.076 - 45.08 - - - -
Scombroidei 0.329 0.342 22.54 0.319 8.03 0.973 0.65
Pleuronectiformes 0.188 0.309 35.32 0.214 6.65 0.625 0.54

* Values given here are calculated from actual G and K values, They are the I, values from Table 7. The alternative, and more general
“expected” ingestion I values, were calculated from the growth-temperature relationships (Table 2) and K, values (Table 6) (see
Methods). The 1. and 1, relationships are illustrated in Figure 15.

differed significantly (P < 0.05). Without adjustment, G of coral reef species was
high (0.228), but the adjusted G of coral reef species was lower than that of larvae
from the other marine ecosystems, except estuarine, when the temperature effect
was removed (Table 2).

The linear relationships between weight-specific growth coefficient (G) and tem-
perature (T) were significant for the shelf, estuary, and coral reef ecosystems (Table
2, Fig. 1A). In these cases, G increased by 0.01 to 0.02 per 1°C increase in T.
There was no significant correlation between G and T for larvae from oceanic
and upwelling systems, probably because the available temperature ranges were
small for these analyses. _

Most taxa had similar temperature-adjusted G, but there were some significant
differences among the nine taxonomic categories (Table 2). Goby larvae had lower
G values than other taxa except labrids, while scombrids had highest G (Figs. 1B,
5). Most of the goby and labrid larvae were coral reef species. If these taxa were
removed from the coral reef data, adjusted G for coral reef larvae would increase
from 0.159 to 0.188, but it would remain the lowest ecosystem G, although no
longer significantly lower (ANCOVA, P > 0.20).

Mortality (Z). —Instantaneous mortality coefficients ranged from 0.05-d~' (Pleu-
ronectes platessa) to 0.52 (Scomber scombrus) and generally increased as tem-
perature increased. The unadjusted mean for 33 taxa was Z = 0.222 (= 19.9%-
d~'). There was a significant relationship (P = 0.0001) between Z and temperature
(T) for the 33 taxa (Table 3, Fig. 2). The mortality coefficient, like that for growth,
increased by approximately 0.01 for each 1°C temperature increase.

There was no significant regression of Z on T for the freshwater fishes, for which
only seven estimates of Z were available (P > 0.50) (Table 3, Fig. 2A). The linear
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Figure 5. Taxon-specific mean weight-specific growth coefficients (G) of teleost larvae. ® Temper-
ature-adjusted +2 standard errors. * Actual means. See Figure 1 for taxon keys and explanations.

regression equation for marine species (N = 26) was significant (P = 0.0001).
Temperature-adjusted Z of marine larvae (Z = 0.239) was significantly higher
than that of freshwater larvae (Z = 0.160) (Table 3; ANCOVA, P < 0.10). The
mean dry weight at hatch of freshwater species in this particular analysis, 247 ug,
was significantly (P < 0.05) heavier than that of the marine species, 47 ug, and
a probable factor affecting mortality rates.

Ecosystem-specific values of adjusted Z for larvae in three systems (Table 3,
Fig. 6) were: upwelling: 0.184; shelf: 0.250; and estuary: 0.266. These means did
not differ significantly (ANCOVA, P > 0.15). Regressions of Z on T were signif-
icant for larvae from estuaries and shelves, but not for the upwelling system (Table
3), where data were restricted to a narrow temperature range. Regression coefhi-
cients (slopes) relating Z and T for the estuary (0.0137) and shelf (0.0130) larvae
were similar (ANCOVA, P = 0.85).

Although adjusted Z values for taxonomic groups ranged widely from 0.179 to
0.342 (Table 3, Fig. 7), the GLM (least square means) pairwise comparisons
indicated that only the highest Z (Scombroidei) differed significantly (P < 0.10)
from the lowest Z (Clupeiformes).

Stage Duration (D). —The estimated larval stage durations of 94 teleost species
ranged from 9 (Scomberomorus maculatus) to 161 (Clupea harengus) days. Mean
D for all taxa was 33.1 d (Table 4). Larval stage duration declines rapidly as
temperature increases. The relationship between D and T (Fig. 3) for all data was
described by a power function (Table 4).

Mean temperature-adjusted stage duration was 15.4 d shorter for freshwater
larvae (20.7 d) than for marine larvae (36.1 d) (Table 4, Fig. 8). The temperature-
adjusted D differed significantly between the freshwater and marine larvae (AN-
COVA, P < 0.0001).
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Figure 6. Temperature-adjusted, ecosystem-specific mean instantaneous mortality coefficients (Z) of
teleost larvae. See Figure 1 for ecosystem keys and explanations.

The mean dry weights at hatch of freshwater and marine species in the stage-
duration analysis were 384 ug and 48 ug, respectively. This seven-fold difference
in weights at hatch partly accounted for the shorter D of freshwater larvae, because
there was no difference in growth rates or sizes at metamorphosis of the marine
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Figure 7. Taxon-specific mean instantaneous mortality coefficients (Z) of teleost larvae. @ Temper-
ature-adjusted *2 standard errors. * Actual means. See Figure 1 for taxon keys and explanations.

and freshwater species. At G = 0.19, the average growth rate of marine teleost
larvae, it would require 11.0 d for a 48-ug (weight at hatch) larva to grow to 384
ug, the hatch weight of a freshwater larva.

The marine ecosystem D values ranged from 20.0 d (oceanic) to 55.7 d (shelf)
(Table 4). After temperature adjustment, the D were similar (34.1 to 36.4 d) for
larvae from all marine systems (Table 4, Fig. 8) except the oceanic (25.9 d), which
was represented primarily by fast growing tuna larvae. There was no significant
correlation between D and T for larvae from upwelling or oceanic ecosystems,
probably because the temperature ranges represented were small (Fig. 3A).

Cypriniform, salmoniform, and scombroid larvae have short temperature-ad-
justed D compared to other taxonomic groups (Table 4, Fig. 9). Clupeiform,
gadiform, gobioid, and labroid larvae have long stage durations. The unadjusted
D ranged from 13.5 d for cypriniform larvae to 105.2 d for gadiform larvae.
Temperature-adjusted D were less variable, ranging from 14.8 d for cypriniform
to 54.2 d for labroid larvae.

Weight-Specific Oxygen Uptake (QO,).—Values of QO, ranged from 2.0 (Core-
gonus albula, C. lavaretus and Sardinops caerulea) to 10.9 (Achirus lineatus) ul
O, mg~!'-h~! and increased as temperature increased for the 30 species analyzed
(Table 5, Fig. 4). Mean QO, for all larvae was 4.35 ul O, mg='-h~'.

Linear regressions for freshwater and marine taxa differed strongly in their QO,
on T relationships (Table 5, Fig. 4A). The temperature-adjusted mean QO, (Fig.
10) for larvae from marine systems (5.90) was more than twice that of freshwater
larvae (2.79), a very significant difference (ANCOVA, P < 0.0001).

For species in the QO, analysis, mean weight at hatch of freshwater larvae was
338 ug (range = 107 to 1,200 pg) and that of marine larvae was 44 ug (range =
8 to 200 ug), a 7.7-fold difference in mean weights. Because QO, is expected to
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Figure 8. Temperature-adjusted, ecosystem-specific mean stage durations (D) of teleost larvae. See
Figure 1 for ecosystem keys and explanations.

CR

decline significantly as weight increases, the weight difference appears to be suf-
ficient to account for the difference in mean QO, between freshwater and marine
larvae (Fig. 11).

There were no demonstrable differences in larval QO, among marine ecosystems
(Table 5, Fig. 10) for the 15 taxa that were included. Temperature-adjusted mean
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Figure 9. Taxon-specific mean stage durations (D) of teleost larvac. ® Temperature-adjusted +2
standard errors. * Actual means. See Figure 1 for taxon keys and explanations.

QO, ranged from 4.78 t0 6.40 ul O, -mg~'-h~! for larvae from estuary, shelf, and
upwelling systems.

Taxa dominated by marine species generally had higher QO, than those dom-
inated by freshwater species. The temperature-adjusted means ranged from 2.34
for cypriniform larvae to 8.03 for scombroid larvae (Table 5, Fig. 12) and differed
significantly (ANCOVA, P < 0.0001). The scombroid, pleuronectiform, and gad-
%)f%rm larvae had higher adjusted mean QO, than other larvae (ANCOVA, P <

.0001).

G/Z Ratio.—The ratio G/Z, an indicator of population biomass increase or de-
crease during a life stage, ranged from 0.27 to 2.43 and was not correlated with
temperature (P > 0.35) (Fig. 13). Mean G/Z of 22 taxa for which estimates of G
and Z were available (Appendix) was 0.94 (SE = 0.13). The mean G/Z for 5
freshwater species was 1.13 (SE = 0.32) and that for 17 marine species was 0.89
(SE = 0.14). These means were not significantly different (P > 0.40). The overall
mean G/Z, and G/Z means for marine and freshwater larvae did not differ sig-
nificantly from a value of 1.0 (Student’s ¢-test, P > 0.25 in all cases), indicating
that population biomasses are relatively constant during the teleost larval stage.
The ratio of the regression coefficients from the G on T (Table 2) and Z on T
(Table 3) regressions, another index of G/Z, was 0.86 for all larvae, an indication
that the ratio is near or slightly less than 1.0.

Gross Growth Efficiency (K,). —There was no significant relationship between K,
and temperature (Fig. 14). Mean K, (=95% confidence limits) for all data was
0.301 = 0.042 (Table 6). The adjusted K, values of larvae from marine and
freshwater ecosystems were 0.291 and 0.319, respectively, values not significantly
different (P > 0.50). Values of adjusted K, for larvae from estuaries, shelf, and
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Figure 10. Temperature-adjusted, ecosystem-specific mean weight-specific oxygen uptake rates (QO,)
of teleost larvae. See Figure 1 for ecosystem keys and explanations.

upwelling ecosystems were 0.241, 0.296, and 0.368, respectively, and did not
differ significantly (ANCOVA, P > 0.20) (Table 6).

There also were no clear differences in larval K, among the taxonomic groups.
Adjusted values ranged from 0.214 (Pleuronectiformes) to 0.353 (Percoidei) (Ta-
ble 6). The temperature-adjusted K, values and standard errors generally over-
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® Temperature-adjusted +2 standard errors. * Actual means. See Figure 1 for taxon keys and expla-
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Figure 13. A, Ecosystem- and B. Taxon-specific, ratio of growth coefficient to mortality coefficient
values (G/Z) of teleost larvae in relation to temperature. See Figure 1 for keys and explanations.

lapped. The ANCOVA did not detect an overall among-taxa difference in the K,
values (P > 0.50), but the paired means comparison procedure did indicate that
K, of percoid larvae was higher than K, of pleuronectiforms (P = 0.05).

Ingestion (I). —The weight-specific ingestion rates required for teleost larvae to
grow at their mean growth rates were calculated for the 22 taxa (Table 7, Fig. 15)
for which estimates of both G and K, were available. Values of I (=G/K,) ranged
from 0.18 (Clupea harengus) to 1.16-d~' (Anchoa mitchilli). The mean 1 was



310

BULLETIN OF MARINE SCIENCE, VOL. 53, NO. 2, 1993

EST SH FW UW
[ ] [ J A A
A. A PY
0.4 - & Ta,
A o
i ¢ .
X = 0.301 A . "
0.3
K1 . A
° w .
0.2 - °
] . .
0.1 T T T T T T
0 5 10 15 20 25 30 35
CLU CYPR GAD LABR PERC PLEUR SAL SCOMB
0 A 0 * [ A ° -
B. S =m A = ATH
N | | A -
0.4 AL
°
- D D
- A
X = 0.301 -
0.3 .
K1 . .
o) w 0
0.2 . A A
N . A
0.1 T T T T T T
0 5 10 15 20 25 30 35

TEMPERATURE (C)

Figure 14. A. Ecosystem- and B. Taxon-specific, gross growth efficiencies (K,) of teleost larvae in
relation to temperature. See Figure 1 for keys and explanations.

0.530-d7!, indicating that, on average, teleost larvae consume more than 50% of
their body weight (dry weight basis) daily to grow at mean reported rates.

The two equations derived to describe the relationship between I and T for
teleost larvae both indicated that weight-specific ingestion required to support
mean growth rates increases by approximately 3% for each 1°C rise in T. The first
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Table 6. Gross growth efficiency (K,). Mean values for all larvae data, and mean values for larvae
by ecosystem and taxon. Adjusted means are based upon analysis of covariance with temperature as
the covariate. Identical superscripts on means indicate no significant difference (GLM least square
means comparison)

Adjusted

Data set N Mean Sy mean Sy
All data 22 0.301 0.020 - -
Marine 14 0.292 0.025 0.291° 0.025
Freshwater 8 0.318 0.037 0.319° 0.035
Estuary 5 0.254 0.027 0.241e® 0.042
Shelf 6 0.287 0.046 0.2962 0.037
Upwelling 3 0.363 0.030 0.368% 0.051
Clupeiformes 3 0.308 0.008 0.308= 0.056
Cypriniformes 4 0.321 0.052 0.305e 0.049
Salmoniformes 2 0.255 0.116 0.256% 0.070
Gadiformes 2 0.322 0.098 0.3252 0.073
Percoidei S 0.353 0.037 0.353® 0.043
Scombroidei 1 0.320 - 0.3192 0.097
Pleuronectiformes 4 0.215 0.034 0.214° 0.048

(I1.) is the linear regression of I on T, obtained after estimating I values from
reported G and K, estimates for the 22 taxa (Table 7, Fig. 15). The second (Ig)
is the expected relationship, derived from the linear regression of G on T (Table
2) and K, (see Methods) for all taxa (Fig. 15).

There were no significant differences in I among ecosystems. The temperature-
adjusted I for marine fish larvae was 0.572 (SE = 0.065), while that for freshwater
larvae was 0.458 (SE = 0.087) (Table 7). These means did not differ significantly
(ANCOVA, P > 0.30). Temperature-adjusted 1 of larvae from estuarine, shelf,
and upwelling marine systems also did not differ (Table 7; ANCOVA, P > 0.50).

Temperature-adjusted 1 did differ significantly among taxonomic groups, rang-
ing from 0.347 (Cypriniformes) to 0.973 (Scombroidei) (Table 7, Fig. 16). Scom-
broid larvae have generally higher required I than the other taxa and significantly
higher I than the cypriniform and gadiform larvae (P < 0.08).

Estimates of I were strongly affected by temperature. Values of I, calculated for
8, 18, and 28°C (Table 8) indicated that ecosystem- and taxon-specific ingestion
rates required to support average growth generally are less than 35% of body
weight at 8°C, increase to more than 50% at 18°C, and are near 100% at 28°C.
Taxon-specific I at 28°C ranged from 77% (Percoidei) to 137% (Scombroidei)
(Table 8).

Energy Budgets. — Temperature-specific energy budgets were calculated for 10,
18, and 28°C for all larvae, marine larvae and freshwater larvae (Table 9). Required
ingestion increased by more than a factor of three for all larvae and marine larvae,
and by a factor of two for freshwater larvae as temperature rose from 10 to 28°C.
Caloric allocations to growth increased at higher temperatures but relative allo-
cations (i.e., as a percentage) remained constant because K, did not change sig-
nificantly with temperature. The Q,, for growth of all larvae and marine larvae
in the 10 to 28°C range was 1.95, but for freshwater larvae it was only 1.43. An
obvious difference in energy budgets of marine and freshwater larvae was the
relatively high allocation to metabolism by the marine larvae (Table 9). The Q,,
for metabolism was 1.40 for the marine and freshwater larvae. Predicted assim-
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Figure 15. The relauonshlps between estimated weight- spemﬁc ingestion (I, d~') and temperature of
teleost larvae. 1, regression based upon i= G/K. for species where both G and K, were estimated.
I; is the equation based upon I = G/K,, where G=a+ bT, from the regressnon for all larvae and K,
= 0.301 (Table 1), the mean gross growth efficiency of teleost larvae. B = marine larvae. 0 = freshwater
larvae.

ilation efficiencies of all larvae declined from 81 to 59% in the range of 10 to 28°C.
The predicted declines in assimilation efficiency for marine and freshwater larvae
in that temperature range were 89 to 65% and 61 to 60%, respectively, suggesting
that assimilation rates of freshwater larvae are less sensitive to changes in tem-
perature.

Temperature-adjusted budgets for larvae in the marine and freshwater cate-
gories, which allow direct comparison of components because temperature effects
have been removed, were derived from the adjusted mean values of G, QO,, and
K, (Tables 2, 5 and 6). The marine larvae had a higher weight-specific ingestion
(24% higher) than the freshwater larvae and a much higher allocation to the
metabolism category (Table 10). The relative allocation to metabolism by marine
larvae was 11.7% higher and, consequently, they had a higher assimilation effi-
ciency (65 vs. 56%).

The estimated weight-specific caloric investment in metabolism is >2 times
higher for marine than for freshwater larvae (Table 10). The relationship between
QO, and dry weight at hatch for 12 marine and 11 freshwater species (Fig. 11)
indicates that QQO, is affected by weight and that freshwater larvae, being heavier,
will have lower metabolic rates.

Within the marine category, temperature-adjusted energy budgets of upwelling
species may be different than budgets of estuarine and shelf species (Table 10).
The upwelling larvae have relatively high allocations to growth and metabolism,
and their assimilation efficiency was estimated to be approximately 20% higher.

The temperature-adjusted energy budgets for seven taxonomic groups indicate
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Figure 16. Taxon-specific, mean required ingestion rates (proportion of body weight) of teleost larvae.
©® Temperature-adjusted *2 standard errors. * Actual means. See Figure 1 for taxon keys and expla-
nations.

probable differences among taxa (Table 11). Required weight-specific caloric in-
gestion to meet mean growth rate varied two-fold from 2.7 (Cypriniformes) to
5.2 cal'mg=!-d~' (Scombroidei). The percentage of ingested energy allocated to
growth varied from 21 (Pleuronectiformes) to 35% (Percoidei). Relative metabolic

Table 8. Predicted daily food consumption (i.e., required ingestion, I, d—') required to meet the mean
weight-specific growth rates and the relationship of I to temperature (T, °C). The equations are derived
from the relationship I = G/K,, where G = a + bT (Table 2), and temperature-adjusted K, (Table
6) values appropriate for each data set

Predicted ingestion (/d)

Data set Expected relationship 8C 18°C 28C
All data I = —0.0751 + 0.0339T 0.20 0.54 0.87
Marine I = —0.0790 + 0.0364T 0.21 0.58 0.94
Freshwater I = 0.1607 + 0.0164T 0.29 0.46 0.62
Estuary I = —0.0979 + 0.0407T 0.23 0.63 1.04
Shelf Iz = —0.3169 + 0.0571T 0.14 0.71 1.28
Upwelling* I = 066 - 0.66 -
Clupeiformes I = 0.1331 + 0.0244T 0.33 0.57 0.82
Cypriniformes* I = 051 - 0.53 -
Salmoniformes Ig = —0.1154 + 0.0433T 0.23 0.66 1.10
Gadiformes I = 0.2625 — 0.0059T 0.31 0.37 -
Percoidei I = —0.0479 + 0.0292T 0.19 0.48 0.77
Scombroidei I = —0.7060 + 0.0740T - 0.63 1.37
Pleuronectiformes I, = 0.034]1 + 0.0369T 0.33 0.70 1.07

* Upwelling larvae and cypriniform larvae only occurred in the 15 to 20°C range. In these cases, 1 was calculated as the ratio of
temperature-adjusted mean G (Table 2) and mean K, (Table 6) for each category.
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Table 9. Temperature-specific energy budgets of all teleost larvae, marine larvae, and freshwater
larvae at 10, 18, and 28°C. Actual budget components are given in cal'mg~'-d-! and relative budget
components in parentheses, are percentages. I = ingestion, G = growth M = metabolism, U = urine,

= feces, A = assimilation efficiency. Budgets were calculated using G (Table 2), QO2 (Table 5),
unadjusled K, (Table 6) and assumed U = 0.07 1. F was obtained by difference

Temper-
Category ature = G + M + u + F A
All 10 1.32 = 0.40 + 0.58 + 0.09 + 0.25 0.81
(100.0) = (@301) + @342 + @J0 + (@187
18 267 = 0.80 + 0.74 + 0.19 + 0.94 0.65
(100.0) = (30.1) +  (27.7) + (7.0 + (35.1)
28 4.37 = 1.32 + 0.95 + 0.31 + 1.80 0.59
(100.0) = @GO.) + QL7 + (100 + (412
Marine 10 1.42 = 0.42 + 0.75 + 010 + 0.16 0.89
(1000) = (292) + (5270 + (.00 + (LD
18 2.87 = 0.84 + 1.03 + 0.20 + 0.81 0.72
(1000) = (292) + @357 + (100 + (28.1)
28 4.70 = 1.37 + 1.37 + 0.33 + 1.63  0.65
(100.0) = (29.2) +  (29.2) + (7.0 + (34.6)
Freshwater 10 1.62 = 0.52 + 0.37 + 0.11 + 0.63 0.6t
(100.0) = (31.8) +  (22.5) + (7.0 + (38.7)
18 2.28 = 0.72 + 0.50 + 0.16 + 0.90 0.61
(100.0) = (31.8) +  (21.8) +  (7.0) +  (39.4)
28 3.09 = 0.98 + 0.66 + 022 + 1.23  0.60
(1000) = @318 + @2i3) + (70 + (398

requirements ranged from 14 (Salmoniformes) to 43% (Gadiformes) of the in-
gested ration. Taxa that are principally or entirely marine (e.g., Gadiformes,
Scombroidei, Pleuronectiformes) had the highest metabolic allocations. Estimated
assimilation efficiencies ranged from 47 (Salmoniformes) to 82% (Gadiformes).

DiscuUssION

After temperature effects were removed by analysis of covariance, relatively
few differences in rates or properties emerged that were specific to larvae from
particular ecosystems or taxonomic groups. But, some significant differences in
rates and energetics properties were found that are indicative of taxa-and eco-
system-specific differences in teleost early life histories. Marine and freshwater
teleost larvae had similar weight-specific growth and ingestion rates, and similar
gross growth efficiencies. Temperature-adjusted mean mortality rate of marine
larvae was 6.5%d~! higher than the mean rate of freshwater larvae. Marine larvae
had significantly higher oxygen uptake rates and longer stage durations. The tem-
perature-adjusted mean oxygen uptake rate of freshwater larvae was only one half
that of marine larvae and mean stage duration of freshwater larvae was 15.5 d
shorter.

Differences in O, uptake rates, stage durations, and mortality rates between
marine and freshwater larvae probably are attributable to differences in weight at
hatch. Freshwater larvae in our analyses averaged nearly seven times heavier than
marine larvae. Weight-specific O, uptake in fishes is negatively related to body
weight (Rombough, 1988) and this relationship may be particularly strong during
early life (Wieser and Forstner, 1986). The larval stage is relatively brief in fresh-
water because, while freshwater larvae are large at hatch, their growth rates and
sizes at metamorphosis are similar to those of marine larvae. Our comparative
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Table 10. Temperature-adjustied energy budgets of marine and freshwater teleost larvae. Actual
budgets in cal-mg~!-d—' and relative budgets, in parentheses, in percentages. Symbols as in Table 9.
Budgets were calculated from adjusted mean G (Table 2), QO, (Table 5), and K, (Table 6). U was
assumed to equal 0.07 1. F was obtained by difference

Category 1 = G + M + U + F A

Marine 3.44 = 1.00 + 0.98 + 0.24 + 1.21 0.65
(100.0) = (29.1) + (28.6) + (7.0) + (35.3)

Estuary 4.06 = 0.98 + 1.07 + 0.28 + 1.73 0.57
(100.0) = (24.1) +  (26.3) +  (7.0) +  (42.6)

Shelf 4.54 = 1.34 + 0.80 + 0.32 + 2.08 0.54
(100.0) = (29.6) + (17.5) + (7.0) + 45.9)

Upwelling 3.29 = 1.21 + 1.03 + 0.23 + 0.82 0.75
(100.0) = (36.8) + (31.2) + (7.0 +  (25.0)

Freshwater 2.78 = 0.89 + 0.47 + 0.19 + 1.23 0.56
(100.0) = @319 + (169 + (100 + (44.2)

analysis of marine and freshwater larvae supports the proposed inverse relation-
ship between larval mortality and size McGurk, 1986, 1987; Miller et al., 1988).
Pepin (1991) found an ontogenetic effect of declining mortality as length increased
in marine fish larvae, although neither he nor Houde (1990, in press) could
demonstrate an effect of size at hatch on larval mortality rate.

Temperature-adjusted G values were similar among larvae from shelf, up-
welling, and oceanic ecosystems, ranging from 0.24 to 0.27. After temperature
adjustment, larval stage durations were similar (34 to 36 d) in all of the marine
ecosystems except the oceanic (26 d). Data from the oceanic system were pre-
dominantly for fast-growing tuna larvae. Adjusted mean mortality rates may have
been lower for upwelling-system larvae (Z = 0.18) than for larvae from estuaries
or shelves (Z = 0.27 and 0.25). Neither the adjusted mean oxygen uptake rates
nor ingestion rates were significantly different among marine ecosystems but, in
each case, shelf species had slightly lower values.

Temperature clearly is not the only important factor that affects rates and
energetics properties of fish larvae. Body size is important and has been proposed
as a primary factor controlling rates (Peterson and Wroblewski, 1984; McGurk,

Table 11. Taxon-specific, temperature-adjusted energy budgets of teleost larvae. Actual budgets in
cal-mg~'-d~! and relative budgets, in parentheses, in percentages. Symbols as in Table 9. Budgets were
calculated from adjusted mean G (Table 2), QO, (Table 5), and K, (Table 6). U was assumed to equal
0.07 1. F was obtained by difference

Taxanomic group 1 = G + M + u + F A
Clupeiformes 3.18 = 098 + 067 + 022 + 1.31 0.59
(100.0) = (30.8) + (21.2) +  (7.0) + (41.0)
Gadiformes 3.02 = 098 + 1.30  + 0.21 + 0.53 0.82
(100.0) = (32.5) + (42.9) +  (7.0) +  (17.6)
Salmoniformes 3.82 = 0.98 + 0.55 + 0.27 + 2.03 0.47
(100.0) = (25.6) +  (14.3) + (7.0 +  (53.1)
Cypriniformes 266 = 0.81 + 039 + 019 + 1.27 0.52
(100.0) = (30.5) + (14.7) + (7.0) + (47.8)
Percoidei 2.89 = 1.02 + 0.60 + 0.20 + 1.07 0.63
(100.0) = (35.3) + (20.9) + (7.0) + (36.8)
Scombroidei 5.16 = 1.65 + 1.34 + 0.36 + 1.81 0.65
(100.0) = (319 + (26.0) + (7.0 + (35.1)
Pleuronectiformes 4.38 = 0.94 + 1.11 + 0.31 + 2.02 0.54
(1000) = (214 + 253 + (700 + (46.3)
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1986, 1987; Miller et al., 1988; Beyer, 1989, Pepin, 1991). MacKenzie et al. (1990)
reported that temperature, body size, and prey abundance explained 85% of the
variance in laboratory-estimated ingestion rates of marine fish larvae. Werner
and Gilliam (1984) argued that ontogenetic shifts occur, causing rates to change
as growth proceeds. Qur analyses did not consider probable ontogenetic changes,
but have estimated averaged values of G, Z, K, and QO, during the larval stage.
Pepin (1991) indicated that temperature, but not initial size, affected mortality
rates of eggs and yolk-sac larvae of marine teleosts, but that body size also affected
mortality rates of postlarval fish. Houde (1990, in press) partitioned marine fish
larvae data into species with hatch weights <50 ug dry wt and those >50 ug dry
wt. At that level he was unable to show a weight-specific effect on growth or
mortality rates and concluded that temperature probably was a more important
factor during early life.

Energy budgets integrate the effects of different rates and properties that were
estimated. Temperature-adjusted energy budgets (Table 10) of freshwater larvae
differ in some respects from those of marine larvae. On a weight-specific basis,
freshwater larvae apparently require only 81% as much ingested energy and only
48% as much energy for metabolism as marine larvae to meet estimated mean
growth rates. Despite the lower metabolic requirement, freshwater larvae do not
have significantly higher gross growth efficiency. Consequently, the estimated
assimilation efficiency of marine larvae is 9% higher than that of freshwater larvae,
mostly attributable to higher metabolic requirements.

The mean assimilation efficiencies (A) of both the marine and freshwater larvae
are lower than expected for juvenile carnivorous fishes, which have a reported
mean A of 80% (Brett and Groves 1979). Only the gadiform larvae have a mean
A at that level (Table 11). Our estimated A values are dependent upon the highly
variable estimates of growth, metabolism, and ingestion. The A values have been
calculated and are presented as the probable efficiencies, recognizing that their
accuracies are uncertain.

Ingestion rate required to support average growth rates increased by a factor of
two to four as temperature increased from 10 to 28°C. MacKenzie et al. (1990)
estimated that maximum ingestion by an average marine fish larva at 18.7°C was
57% of the body weight, based upon a model that included temperature, body
weight, and prey density as independent variables. Our ingestion estimates for an
average teleost larva at 18.7°C from the I, and I; relationships (Table 7, Fig. 15),
in which temperature is the only independent variable, are 60 and 56%, respec-
tively, results essentially the same as obtained by MacKenzie et al. (1990).

MacKenzie et al. (1990), based upon laboratory-derived functional response
relationships, calculated that consumption rates of marine fish larvae in the sea
should be resource constrained and thus less than maximum. But, their estimated
in situ ingestion rates of eight species of fish larvae indicated that these larvae
had consumed food at maximum rates, leading the authors to hypothesize that
variable encounter rates and temporal-spatial variability in distributions of larvae
and prey had enhanced feeding success. In our analysis, the Q,, value for growth
and ingestion for all and for marine teleost larvae was 1.95, indicating that mean
ingestion and growth rates of larvae that survived are approximately those ex-
pected, based solely upon enzyme kinetics and without considering prey densities
or complex predator-prey behaviors. In reality, it is certain that prey density, its
distribution, and the probability of encounter between larvae and prey all affect
individual growth rates and variability in growth, but at the aggregated taxa or
ecosystem levels, survivors were growing, on average, at mean rates that were
governed primarily by temperatures that they experienced.
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The taxon-specific ingestion estimates in the energy budgets do not necessarily
indicate different sensitivities to food limitation among first feeding stages. The
numbers of prey required depends not only upon the caloric weight-specific de-
mand (Table 11), but also upon larva size and size of prey that can be consumed.
If teleost larvae ate primarily copepod nauplii of mean dry weight 0.25 ug and
the mean body weights of newly hatched larvae were 47 ug (marine) and 339 ug
(freshwater), then numbers of prey required for larvae to grow at mean expected
rates would differ more between these ecosystems than would weight-specific
caloric intakes. For example, marine larvae have a higher weight-specific ration
(Table 7), but they require relatively few prey when they first feed (108 nauplii/
d) because the larvae are small at hatch. In contrast, if the freshwater taxa ate
0.25 pg nauplii at first feeding, they would require, on average, 621 nauplii-d—'.
For taxa that eat prey larger than 0.25 pg mean weight (e.g., Coregonus spp.,
Salmoniformes), the actual required prey numbers would be considerably lower
than these calculated values.

Growth rates and mortality rates of marine fish larvae were demonstrated to
be highly correlated (Houde, 1990; Pepin, 1991). In previous analyses that were
restricted to marine fish larvae, Houde (1989b, 1990) found that the ratio G/Z
was < 1.0, implying a loss of biomass during the larval stage. Morse (1989) reported
G/Z > 1.0 for several northwest Atlantic fish larvae and suggested that if ratios
are <1.0, sampling bias associated with gear avoidance by larger larvae is the
probable cause. Our present analysis, on an expanded data base, indicated mean
G/Z of 0.94 for all larvae, a value near 1.0. Results for all larvae, marine larvae
(G/Z = 0.89), and freshwater larvae (1.13) did not differ significantly from 1.0,
suggesting that biomasses during the teleost larval stage are relatively stable.

If G/Z is near 1.0 and gross growth efficiency is constant during the larval stage,
then the daily ingestion of a cohort required to support mean growth rate would
remain approximately constant throughout larval life. A cohort’s biomass nor-
mally will increase at some stage of development and the G/Z eventually will
exceed 1.0, a consequence of relatively fast decline in Z as larvae grow (Ware,
1975; Beyer, 1989). The cohort’s daily ingestion of its prey resources then will
increase. It is easy to demonstrate from our compiled and analyzed data that
small changes in either G or Z can cause two-fold or greater changes in a cohort’s
daily ingestion requirement, an ecosystem-level effect that potentially is important
in the recruitment process.

We found that larvae of coral reef fishes grow slower than expected under the
temperature conditions prevalent in their environment. A major factor contrib-
uting to their low adjusted G was the surprisingly slow growth of reef labrid and
goby larvae. Stage durations of these larvae, based upon otolith increment counts,
have repeatedly been found to be long and variable compared to other taxa
(Brothers et al., 1983; Victor, 1986, 1987; Thresher and Brothers, 1989). The
temperature-adjusted G for labrids and gobies are those expected for teleost larvae
at only 10 to 13°C, based upon our regression of G on T for all fish larvae (Table
2), despite the fact that coral reef labrids and gobies develop at temperatures
>26°C. Removing labrid and goby larvae from our analysis did not change the
rank of G for coral reef larvae. It still was the lowest of the ecosystem-specific
adjusted G, indicating that even the pomacentrids, which dominate the data base
(Brothers et al., 1983; Thresher and Brothers, 1989; Wellington and Victor, 1989,
Thorrold and Milicich, 1990), grow relatively slowly for temperatures that they
inhabit.

Temperature also may explain some of the geographic variability in stage du-
rations that has been observed in coral reef fish larvae. There is a complex literature
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discussing the biogeography of coral reef teleosts, which relates larval stage du-
rations to observed distribution patterns and ranges of adults. Larval stage du-
ration is presumed to be evolved and adaptive, and closely linked to dispersal
possibilities and island geography. Although interpretations vary, it appears that
stage durations are longer in the western Atlantic and in Hawaii than in the West-
Indo Pacific (Thresher and Brothers, 1989; Wellington and Victor, 1989). Our
growth and stage duration analyses (Tables 2, 4), suggest that a large fraction of
the geographic variability in G and D might be explained by temperature. Pub-
lished reports on coral reef larvae seldom provide temperatures, but atlases of
sea surface temperature (Robinson, 1973; Bramwell, 1977) indicate that annual
means are 24.3°C (Hawaii), 26.8°C (Caribbean), and 28.1°C (West-Indo Pacific).
Expected stage durations at those temperatures, calculated from our relationship
between D and T for coral reef larvae (Table 4), range from 24.2 d (West-Indo
Pacific), to 27.2 d (Caribbean), to 33.2 d (Hawaii). There appears to be a strong
physiological influence of temperature, in addition to adaptive components, in
life histories of reef fish larvae that contributes to stage duration variability.

While results of our analyses and of other recent conceptual analyses (Miller et
al., 1988; Houde, 1989; Morse, 1989; Pepin, 1991) should not be used to predict
responses of individual species, determining species-specific deviations from ex-
pected dynamics or energetics values may serve to identify particular life-history
strategies and specific adaptations. Ecosystem- and taxon-specific ingestion esti-
mates and derived energy budgets of fish larvae can be compared with those of
other zooplankton. Given seasonal surveys of ichthyoplankton abundance, di-
versity, temperature, and larva weight-frequency distributions, the weight-specific
growth and ingestion estimates of larval teleost assemblages could be obtained.
Temporal and spatial variability in ingestion, growth, and production could be
estimated and incorporated into ecosystem and recruitment models.

In future research, more effort should be made to obtain weights as well as
lengths of ichthyoplankton to allow dynamics of larvae to be linked in a meaningful
way to population- and community-level energetics processes. Good temperature
data are essential to estimate the production potential of ichthyoplankton in any
ecosystem, including tropical systems, where seasonal temperature differences,
though small, can still have important consequences for fish early life histories.
We did not examine effects of ontogeny and body size on vital rates or energetics,
but there is a need to do it, as Miller et al. (1988) and Beyer (1989) proposed and
Pepin (1991) has done. A further consideration is the possibility that dynamics
of teleost larvae and energetics properties are related in a predictable way to
overall ecosystem productivity. That hypothesis and others related to community-
level dynamics of fish larvae can be tested as better data on bioenergetics and
vital rates become available for ichthyoplankton assemblages.
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HOUDE AND ZASTROW: LARVAL FISH ASSEMBLAGE DYNAMICS AND ENERGETICS
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